NOAA IMAGE CLASSIFICATION USING GOOGLE’S TEACHABLE MACHINE
Abstract
Full Text:
PDFReferences
Rasyidi, E. S., Sandi, R. and Buraerah, M. F.
(2020). Monitoring Perubahan Suhu Ibu
Kota Negara Tahun 1993-2019
Menggunakan Citra Satelit Landsat
(Studi Kasus: Jakarta, Singapura, Kuala
Lumpur Dan Bangkok). J. Ilm. Ecosyst.,
–58.
Akhbar, A. I., Jaya, Y. V. and Febrianto, T.
(2018). Kajian Suhu Permukaan Laut
Berdasarkan Data Citra Satelit NOAAAVHRR Dan Data Argo Float Di
Perairan Selatan Jawa. Din. Marit., 27–
Wicaksono, A., Muhsoni, F. F. and Fahrudin,
A. (2010). Aplikasi Data Citra Satelit
NOAA-17 Untuk Mengukur Variasi
Suhu Permukaan Laut Jawa. J. Kelaut.,
-74, doi: 10.21107/jk.v3i1.849.
Carney, M., Webster, B., Alvarado, I.,
Phillips, K., Howell, N., Griffith, J.,
Jongejan, J., Pitaru, A. and Chen, A.
(2020). Teachable Machine :
Approachable Web-Based Tool for
Exploring Machine Learning
Classification. 2020 CHI Conference on
Human Factors in Computing Systems,
doi: 10.1145/3334480.3382839.
Krisna, M. M., Neelima, M., Harshali, M. and
Rao, M. V. G. (2018). Image
Classification Using Deep Learning.
International Journal of Engineering &
Technology, 614-617, doi:
14419/ijet.v7i2.7.10892.
Toivonen, T., Jormanainen, I., Kahila, J.,
Tedre, M., Valtonen, T. and Vartiainen,
H. (2020). Co-Designing Machine
Learning Apps in K-12 with Primary
School Children. 2020 IEEE 20th
International Conference on Advanced
Learning Technologies (ICALT), doi:
1109/ICALT49669.2020.00099.
Kacorri, H. (2017). Teachable Machines for
Accessibility. ACM SIGACCESS
Accessibility and Computing, doi:
1145/3167902.3167904.
Wahyuningsih, D. S., Wulan, T. R., Ibrahim,
F. and Maulana, E. (2016). Application
of NOAA Imagery to Predict the Fish
Distribution Point Case Study:
Pelabuhan Perikanan Pantai (PPP)
Tegalsari, Tegal, Center of Java.
Seminar Nasional Penginderaan Jauh.
Natarajan, V. and Philipoff, P. (2018).
Observation of Surface and Atmospheric
Parameters Using “NOAA 18” Satellite :
A Study on Earthquakes of Sumatra and
Nicobar Is Regions for the Year 2014.
Nat. Hazards, doi: 10.1007/s11069-018-
-y.
Chakraborty, G., Kudoh, J., Shiratori, N. and
Noguchi, S. (1993). Classification of the
NOAA Satellite Image Data by
Unsupervised Neural Network. Trans. of
the Society of Instrument and Control
Engineers, 281-287.
Hidayat, R., Subardjo, P. and Ismanto, A.
(2015). Variabilitas Suhu Permukaan
Laut Di Pantai Utara Semarang
Menggunakan Citra Satelit Aqua Modis.
Journal of Oceanography, 166-170.
Saputra, M. R. (2019). Analisis Perbandingan
Citra Satelit Aqua Modis Dan NOAA
AVHRR Untuk Pemetaan Suhu
Permukaan Laut Dengan Menggunakan
Acuan Data In Situ ( Studi Kasus :
Perairan Pesisir Selat Madura).
Jeong, H. (2020). Feasibility Study of
Google's Teachable Machine in
Diagnosis of Tooth-Marked Tongue.
Journal of Dental Hygiene Science. The
Korean Society of Dental Hygiene
Science, 206-212, doi:
17135/jdhs.2020.20.4.206.
Forchhammer, S., Abu-Ghazaleh, A.,
Metzler, G., Garbe, C. and Eigentler, T.
(2022). Development of an Image
Analysis-Based Prognosis Score Using
Google's Teachable Machine in
Melanoma. Cancers 2022, doi:
3390/cancers14092243.
Indolia, S., Goswami, A. K., Mishra, S. P. and
Asopa, P. (2018). Conceptual
Understanding of Convolutional Neural
Network- A Deep Learning Approach.
Procedia Comput. Sci., 679-688, doi:
1016/j.procs.2018.05.069.
Luo, L. (2021). Research on Image
Classification Algorithm Based on
Convolutional Neural Network. J.
Phys.: Conf. Ser., doi: 10.1088/1742-
/2083/3/032054.
Soni, K. B., Chopade, M. and Vaghela, R.
(2021). Credit Card Fraud Detection
Using Machine Learning Approach.
Appl. Inf. Syst. Manag., 71-76, doi:
15408/aism.v4i2.20570
DOI: https://doi.org/10.30998/semnasristek.v7i1.6244
Refbacks
- There are currently no refbacks.
Prosiding SEMNAS RISTEK indexed by:



