PEMODELAN ENZIM GLUTATHIONE S-TRANSFERASE ANOPHELES FARAUTI SEBAGAI INHIBITOR INSECTISIDA GOLONGAN ORGANOFOSFAT

Semuel Sandy

Abstract


Enzim Glutathione S-Transferase (GST) (EC 2.5.1.18) terdiri dari golongan enzim multifungsi yang mengkatalisis konjugasi glutathione (GSH) menjadi senyawa elektrofilik. Isozim ini dianggap memainkan peran penting dalam detoksifikasi xenobiotic. Studi mengenai resistensi insektisida gologan organofosfat dan orgnoklorin terkait dengan peningkatan aktifitas enzim GST. Penelitian ini bertujuan menganalisis struktur pemodelan homologi enzim GTS Anopheles farauti. metode penelitin ini menggunakan data sekunder dari server UniProt, data urutan protein dianalisis menggunakan aplikasi ProtParam, dan SOPMA. Pemodelan homologi enzim GTS menggunakan server Swiss Model, dan validasi atau evaluasi struktrur tiga-dimensi menggunakan MolProbity, ProSA dan SAVES v6.0 (ERRAT, Verfy 3D, PROCHECK). Hasil prediksi sifat fisikokimia diperoleh Panjang urutan protein 210, dengan berat molekul 24311.98 Dalton, titik isoelektrik 6.17, Enzim GTS bersifat stabil (Indeks stabilitas 33.07), dan enzim GTS bersifat hidroilik (Grand average of hydropathicity (GRAVY) -0.278. Prediksi struktur sekunder diperoleh Alpha helix (Hh) 107 (50.95%), Extended strand (Ee 31 (14.76%), Beta turn (Tt) 9 (4.29%) dan Random coil (CC) 63 (30.00%). Hasil pemodelan model struktur tiga-dimensi diperoleh model Refine #01 yang tervalidasi dimana ProSA -8.58, ERRAT 97%, Verfy 3D 86.33%, PROCHECK Ramacandran plot diperoleh most favoured regions 353 (92.2%); allowed regions 29 7.(6%); generously allowed regions 1 (0.3%); disallowed regions 0 (0.0%), dan G-factors 0.12

Full Text:

PDF

References


Buxbaum, E. (2015). Fundamentals of protein structure and function, second edition. Fundamentals of Protein Structure and Function, Second Edition, 1–521.

Filiz, E., & Koç, I. (2014). In silico sequence analysis and homology modeling of predicted beta-amylase 7-like protein in Brachypodium distachyon L. J. BioSci. Biotech, 3(1), 61–67.

Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein Identification and Analysis Tools on the ExPASy Server (J. M. Walker, Ed.; 1st ed., pp. 571–607.

Geourjon, C., & Deleage, G. (1995). SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. In CABIOS (Vol. 11).

Grant, D. F., Dietze, E. C., & Hammock, B. D. (1991). Glutathione S-transferase isozymes in Aedes aegypti: Purification, characterization, and isozyme-specific regulation. Insect Biochemistry, 21(4), 421–433.

Lushington, G. H. (2015). Comparative modeling of proteins. Methods in Molecular Biology, 1215, 309–330.

Nelson, D. L., & Cox, M. M. (1982). Principles of Biochemistry. In Cell Biology of Physarum and Didymium.

Ranson, H., Rossiter, L., Ortelli, F., Jensen, B., Wang, X., Roth, C. W., Collins, F. H., & Hemingway, J. (2001). Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector Anopheles gambiae. Biochemical Journal, 359(2), 295–304.

Ruslin, R., Putri, S. R., & Arba, M. (2019). Pemodelan Homologi Protein Receptor Orphan Receptor-1 (ROR-1) Sebagai Target Terapi Chronic Lymphocytic Leukemia (CLL. Pharmauho:Jurnal Farmasi, Sains, Dan Kesehatan, 5(1), 1–6.

WHO. (2021). World malaria report 2021 (1st ed.). World Health Organization.

Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(SUPPL.2), 407–410.




DOI: https://doi.org/10.30998/semnasristek.v7i1.6272

Refbacks

  • There are currently no refbacks.


Prosiding SEMNAS RISTEK indexed by: