Kombinasi Algoritma Decision Tree dan Naive Bayes untuk Meningkatkan Akurasi dan Kecepatan Waktu Deteksi Malware
Abstract
Secara umum malware mencakup virus, keylogger, worm, trojan, rootkit, spyware, ransomware, dan software berbahaya lain yang perlu diwaspadai. Malware menyerang berkas seseorang lalu menyalin diri sehingga bisa merusak sistem kerja hardisk, mengambil data smartphone, maupun merusak sistem operasi pada komputer target. Data malware memiliki variabel bebas dan variabel terikat. Pengembangan menggunakan teknik data mining untuk mencari variabel terbaik untuk data training dan data testing sedangkan secara teknik dengan profiling. Data mining membantu menemukan pola, pengetahuan baru, formula baru, aturan, maupun insight dari suatu data. Penelitian ini penulis mengusulkan pendekatan baru melalui eksperimen menggabungkan dua algoritma mesin pembelajaran yang berbeda yaitu algoritma memiliki label ataupun tidak berlabel. Berlandaskan dari dua pendekatan yang masing-masing mempunyai kelebihan. Eksperimen sebanyak empat kali penggabungan dengan lima dataset berbeda untuk menguji akurasi dan kecepatan waktu. Algoritma yang diuji yaitu antara algoritma random forest dengan decision tree, algoritma decision tree dengan random forest, algoritma naive bayes dengan algoritma decision tree, serta algoritma decision tree dengan algoritma naive bayes. Hasil eksperimen tertinggi ada pada penggabungan algoritma decision tree dan algoritma naive bayes dengan rata-rata 96,12 % dan kecepatan waktu 5,36 milidetik.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Bushuyeva, N., dan Kutsenko, M. (2019): Data Mining technics in projects with multinational teams, 2019 IEEE 14th International Conference on Computer Sciences and Information Technologies (CSIT), IEEE, Lviv, Ukraine, 278–281. https://doi.org/10.1109/STC-CSIT.2019.8929801
Canbek, G., Sagiroglu, S., dan Taskaya Temizel, T. (2018): New Techniques in Profiling Big Datasets for Machine Learning with a Concise Review of Android Mobile Malware Datasets, 2018 International Congress on Big Data, Deep Learning and Fighting Cyber Terrorism (IBIGDELFT), IEEE, ANKARA, Turkey, 117–121
Dan, J., Jianlin, Q., Yanyun, C., dan Li, C. (2011): Clustering method and its formalization, 2011 6th IEEE Joint International Information Technology and Artificial Intelligence Conference, IEEE, Chongqing, China, 57–61. https://doi.org/10.1109/ITAIC.2011.6030150
Ghazi, A. E., dan Moulay Rachid, A. (2020): Machine learning and datamining methods for hybrid IoT intrusion detection, 2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech), IEEE, Marrakesh, Morocco, 1–6. https://doi.org/10.1109/CloudTech49835.2020.9365895
Hull, M., Eze, T., dan Speakman, L. (2018): Policing The Cyber Threat: Exploring the Threat from Cyber Crime and the Ability of Local LawEnforcement to Respond, 2018 European Intelligence and Security Informatics Conference (EISIC), IEEE, Karlskrona, Sweden, 15–22. https://doi.org/10.1109/EISIC.2018.00011
Roseline, S. A., Geetha, S., Kadry, S., dan Nam, Y. (2020): Intelligent VisionBased Malware Detection and Classification Using Deep Random Forest Paradigm, IEEE Access, 8, 206303–206324. https://doi.org/10.1109/ACCESS.2020.3036491
Shalev-Shwartz, S., dan Ben-David, S. (2014): Understanding Machine Learning: From Theory to Algorithms (1 ed.), Cambridge University Press. https://doi.org/10.1017/CBO9781107298019
Tang, X., Dong, M., Bi, S., Pei, M., Cao, D., Xie, C., dan Chi, S. (2017): Feature Selection Algorithm Based on K-means Clustering, 2017 IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), IEEE, Honolulu, HI, 1522–1527. https://doi.org/10.1109/CYBER.2017.8446108
Yang, L., Ciptadi, A., Laziuk, I., Ahmadzadeh, A., dan Wang, G. (2021):
BODMAS: An Open Dataset for Learning based Temporal Analysis of PE Malware, 2021 IEEE Security and Privacy Workshops (SPW), IEEE, San Francisco, CA, USA, 78–84. https://doi.org/10.1109/SPW53761.2021.00020
DOI: https://doi.org/10.30998/semnasristek.v9i1.7874
Refbacks
- There are currently no refbacks.
Prosiding SEMNAS RISTEK indexed by:



