Fenomena Halo pada Isotop Ca Menggunakan Model Relativistic Mean Field (RMF)

Alpi Mahisha Nugraha

Abstract


Fenomena halo merupakan salah satu fenomena yang dapat ditemukan di dalam inti atom, fenomena ini merupakan fenomena struktur atau bentuk nuklir akibat adanya ketidak-seragaman massa atau perbedaan distribusi massa yang merupakan fungsi dari jari-jari nuklir tersebut, sehingga nuklir akan terlihat seperti mempunyai ruang kosong dalam nuklir tersebut alih-alih fenomena optik seperti pada fenomena halo matahari meskipun fenomena tersebut berbentuk mirip. Dalam penelitian ini, peneliti menggunakan model Relativistic Mean Field (RMF) untuk menghitung properties nuklir seperti energi ikat dan distribusi massa yang kemudian akan dibandingkan dengan hasil eksperimen laboratorium. Isotop Ca merupakan isotop yang sampai saat ini masih mejadi topik pengembangan laboratorium nuklir sehingga analisa propertis Isotop Ca menjadi salah satu daya tarik tersendiri karena para peneliti dapat menjadikan nilai eksperimen laboratorium sebagai referensi control pemodelan yang dilakukan. Model RMF menjadi salah satu pemodelan yang cukup powerfull dalam menganalisis properties nuklir seperti  fenomena halo.


References


Abdullah, A. N. (2017). Nuclear structure investigation of some neutron-rich halo nuclei. International Journal of Modern Physics E, 26(7). https://doi.org/10.1142/S0218301317500483

Bennaceur, K., Dobaczewski, J., & Ploszajczak, M. (2000). Pairing anti-halo effect. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 496(3–4), 154–160. https://doi.org/10.1016/S0370-2693(00)01292-2

Cai, X. Z., Zhang, H. Y., Shen, W. Q., Shen, W. Q., Shen, W. Q., Ren, Z. Z., Feng, J., Fang, D. Q., Zhu, Z. Y., Jiang, W. Z., Ma, Y. G., Ma, Y. G., Zhong, C., Zhan, W. L., Guo, Z. Y., Xiao, G. Q., Wang, J. S., Zhu, Y. T., Wang, J. C., … Chen, Z. Q. (2002). Existence of a proton halo in 23Al and its significance. Physical Review C - Nuclear Physics, 65(2), 246101–246105. https://doi.org/10.1103/PhysRevC.65.024610

Hamamoto, I. (2017). Examining possible neutron-halo nuclei heavier than Mg 37. Physical Review C, 95(4), 1–6. https://doi.org/10.1103/PhysRevC.95.044325

Jonson, B. (1994). Halo nuclei. Nuclear Physics, Section A, 574(1–2), 151–166. https://doi.org/10.1016/0375-9474(94)90043-4

Jonson, Björn. (2004). Light dripline nuclei. Physics Reports, 389(1), 1–59. https://doi.org/10.1016/j.physrep.2003.07.004

Kienle, P. (2004). Medium energy antiproton absorption, a tool to study neutron halo nuclei. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 214(SUPPL.), 191–195. https://doi.org/10.1016/S0168-583X(03)01776-2

Rotival, V., & Duguet, T. (2009). New analysis method of the halo phenomenon in finite many-fermion systems: First applications to medium-mass atomic nuclei. Physical Review C - Nuclear Physics, 79(5). https://doi.org/10.1103/PhysRevC.79.054308

Sulaksono, A. (2011). Electromagnetic and isovector terms in standard relativistic mean field model. International Journal of Modern Physics E, 20(9), 1983–2010. https://doi.org/10.1142/S0218301311019775

Tanihata, I., Savajols, H., & Kanungo, R. (2013). Recent experimental progress in nuclear halo structure studies. Progress in Particle and Nuclear Physics, 68(1), 215–313. https://doi.org/10.1016/j.ppnp.2012.07.001

Zhang, K., Cheoun, M. K., Choi, Y. B., Chong, P. S., Dong, J., Dong, Z., Du, X., Geng, L., Ha, E., He, X. T., Heo, C., Ho, M. C., In, E. J., Kim, S., Kim, Y., Lee, C. H., Lee, J., Li, H., Li, Z., … Zhou, S. G. (2022). Nuclear mass table in deformed relativistic Hartree–Bogoliubov theory in continuum, I: Even–even nuclei. Atomic Data and Nuclear Data Tables, 144(February), 101488. https://doi.org/10.1016/j.adt.2022.101488

Zhang, Y., Matsuo, M., & Meng, J. (2012). Pair correlation of giant halo nuclei in continuum Skyrme-Hartree-Fock- Bogoliubov theory. Physical Review C - Nuclear Physics, 86(5), 1–12. https://doi.org/10.1103/PhysRevC.86.054318

Zhou, S. G., Meng, J., Ring, P., & Zhao, E. G. (2010). Neutron halo in deformed nuclei. Physical Review C - Nuclear Physics, 82(1), 1–5. https://doi.org/10.1103/PhysRevC.82.011301


Refbacks

  • There are currently no refbacks.


Faculty of Mathematics and Sciences
Universitas Indraprasta PGRI

Address: Jl. Raya Tengah No. 80, Kel. Gedong, Kec. Pasar Rebo, Jakarta Timur 13760 , Jakarta, Indonesia. 
Phone: +62 (021) 7818718 – 78835283 | Close in sunday and public holidays in Indonesia
Work Hours: 09.00 AM – 08.00 PM
Best hours to visit: From 9 am to 11 am or after 3 pm. The busiest times are between 11 am and 3 pm. 

Creative Commons License
Prosiding Seminar Nasional Sains 2020 is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License