Kajian Transformasi Fourrier

FATAHILLAH FATAHILLAH

Sari


. Suatu segmen fungsi yang dapat dinyatakan dalam bentuk periodik dinamakan dengan deret fourrier.Diskusi panel ini berjudul “Kajian Transformasi Fourrier”. Ada 2 integral dalam deret fourrier yaitu “pengintegralan kontinu dan pengintegralan semi kontinu (secara bersamaan), dan ini dinamakan “Transformasi Fourrier”.Semi kontinu yaitu bila penjumlahan suatu deret berjalan dari 0 sampai tak hingga.

 

Kata kunci:Transformasi, Fourrier, Periodik


Teks Lengkap:

PDF

Referensi


Abromowitz, Milton, and Irene A. Stegun, editors, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematical Series, 55, U.S. Government Printing Office, Washington, D.C., 1964

Anton, Howard, Elementary Linear Algebra, Willey, New York, 2nd ed., 1977

Apostol, Tom M., Calculus, Blaisdeil, Waltham, Mass., 2nd ed., 1967

Arfken, George, Mathematical Method for Physicists, Academic Press, New York, 2nd ed., 1970

Bak, Thor A., and Jonas Lichtenberg, Mathematics for Scientists, Benjamin, New York, 1966

Bartle, Robert G., The Element of Real Analysis, Wiley, New York, 1964

Blies, Gilbert Ames, Calculus of Variation, Open Court, Chicago, 1925

Boyce,William E., and Richard C., DiPrima, Introduction to Differential Equation, Wiley, New York, 1970

Brauer, Fred, and John A., Nohel, Differential Equations: A First Course, Benjamin, Menlo Park, California, 2nd ed., 1973

Buck, R. Creighton, and Ellen F. Buck, Advanced Calculus, McGraw-Hill, New York, 3 nd ed, 1978

Butkov, Eugene, Mathematical Physics, Addison- Wesley, Reading, Mass., 1968

Byrd, P. F., and Morris D.Friedman, Handbook of Elliptic Integrals for Engineer and Physicists, Springer, Berlin-Gottingen-Heidelberg, 1954


Refbacks

  • Saat ini tidak ada refbacks.