Kajian Transformasi Fourrier
Sari
. Suatu segmen fungsi yang dapat dinyatakan dalam bentuk periodik dinamakan dengan deret fourrier.Diskusi panel ini berjudul “Kajian Transformasi Fourrier”. Ada 2 integral dalam deret fourrier yaitu “pengintegralan kontinu dan pengintegralan semi kontinu (secara bersamaan), dan ini dinamakan “Transformasi Fourrier”.Semi kontinu yaitu bila penjumlahan suatu deret berjalan dari 0 sampai tak hingga.
Kata kunci:Transformasi, Fourrier, Periodik
Teks Lengkap:
PDFReferensi
Abromowitz, Milton, and Irene A. Stegun, editors, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematical Series, 55, U.S. Government Printing Office, Washington, D.C., 1964
Anton, Howard, Elementary Linear Algebra, Willey, New York, 2nd ed., 1977
Apostol, Tom M., Calculus, Blaisdeil, Waltham, Mass., 2nd ed., 1967
Arfken, George, Mathematical Method for Physicists, Academic Press, New York, 2nd ed., 1970
Bak, Thor A., and Jonas Lichtenberg, Mathematics for Scientists, Benjamin, New York, 1966
Bartle, Robert G., The Element of Real Analysis, Wiley, New York, 1964
Blies, Gilbert Ames, Calculus of Variation, Open Court, Chicago, 1925
Boyce,William E., and Richard C., DiPrima, Introduction to Differential Equation, Wiley, New York, 1970
Brauer, Fred, and John A., Nohel, Differential Equations: A First Course, Benjamin, Menlo Park, California, 2nd ed., 1973
Buck, R. Creighton, and Ellen F. Buck, Advanced Calculus, McGraw-Hill, New York, 3 nd ed, 1978
Butkov, Eugene, Mathematical Physics, Addison- Wesley, Reading, Mass., 1968
Byrd, P. F., and Morris D.Friedman, Handbook of Elliptic Integrals for Engineer and Physicists, Springer, Berlin-Gottingen-Heidelberg, 1954
Refbacks
- Saat ini tidak ada refbacks.