PERFORMA CONVOLUTIONAL NEURAL NETWORK DALAM DEEP LAYERS RESNET-50 UNTUK KLASIFIKASI MRI TUMOR OTAK
Abstract
Full Text:
PDFReferences
Abdullah, M., Ahmad, M., & Han, D. (2020, January 1). Facial Expression Recognition in Videos: An CNN-LSTM based Model for Video Classification. 2020 International Conference on Electronics, Information, and Communication, ICEIC 2020. https://doi.org/10.1109/ICEIC49074.2020.9051332
Deshpande, A., Estrela, V. V., & Patavardhan, P. (2021). The DCT-CNN-ResNet50 architecture to classify brain tumors with super-resolution, convolutional neural network, and the ResNet50. Neuroscience Informatics, 1(4), 100013. https://doi.org/10.1016/j.neuri.2021.100013
Fomin, I., Burin, V., & Bakhshiev, A. (2020). Research on Neural Networks Integration for Object Classification in Video Analysis Systems. 2020 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), 1–5. https://doi.org/10.1109/ICIEAM48468.2020.9112011
Haq, A. ul, Li, J. P., Kumar, R., Ali, Z., Khan, I., Uddin, M. I., & Agbley, B. L. Y. (2022). MCNN: a multi-level CNN model for the classification of brain tumors in IoT-healthcare system. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-022-04373-z
Jatmiko, A. W. (2021). Efek Pemakaian Kontras Untuk Optimalisasi Citra Pada Pemeriksaan Diagnostik Magnetic Resonance Imaging (MRI). Jurnal Biosains Pascasarjana, 23(1), 28. https://doi.org/10.20473/jbp.v23i1.2021.28-39
Li, X. X., Li, D., Ren, W. X., & Zhang, J. S. (2022). Loosening Identification of Multi-Bolt Connections Based on Wavelet Transform and ResNet-50 Convolutional Neural Network. Sensors, 22(18). https://doi.org/10.3390/s22186825
Nugraha, G. S., Darmawan, M. I., & Dwiyansaputra, R. (2023). Comparison of CNN’s Architecture GoogleNet, AlexNet, VGG-16, Lenet -5, Resnet-50 in Arabic Handwriting Pattern Recognition. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control. https://doi.org/10.22219/kinetik.v8i2.1667
Nugroho, N. E. W., & Harjoko, A. (2021). Transliteration of Hiragana and Katakana Handwritten Characters Using CNN-SVM. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 15(3), 221. https://doi.org/10.22146/ijccs.66062
Reddy, A. S. B., & Juliet, D. S. (2019). Transfer Learning with ResNet-50 for Malaria Cell-Image Classification. 2019 International Conference on Communication and Signal Processing (ICCSP), 0945–0949. https://doi.org/10.1109/ICCSP.2019.8697909
Sofian, J., & Laluma, R. H. (2019). Klasifikasi Hasil Citra Mri Otak Untuk Memprediksi Jenis Tumor Otak Dengan Metode Image Threshold Dan Glcm Menggunakan Algoritma K-NN (Nearest
Ullah, N., Khan, J. A., Khan, M. S., Khan, W., Hassan, I., Obayya, M., Negm, N., & Salama, A. S. (2022). An Effective Approach to Detect and Identify Brain Tumors Using Transfer Learning. Applied Sciences (Switzerland), 12(11). https://doi.org/10.3390/app12115645
Yohannes, R., & Al Rivan, M. E. (2022). Klasifikasi Jenis Kanker Kulit Menggunakan CNN-SVM. Jurnal Algoritme, 2(2), 133–144. https://doi.org/10.35957/algoritme.v2i2.2363
Ziaee, A., & Çano, E. (2022). Batch Layer Normalization A new normalization layer for CNNs and RNNs. ACM International Conference Proceeding Series, 40–49.
DOI: https://doi.org/10.30998/semnasristek.v8i01.7125
Refbacks
- There are currently no refbacks.
Prosiding SEMNAS RISTEK indexed by: