PREDIKSI PENYAKIT MATA MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK

Cahaya Jatmoko, Heru Lestiawan

Abstract


Penyakit mata merupakan sebuah penyakit yang sangat berbahaya dan memiliki dampak yang dapat menghambat aktivitas kita sebagai manusia. Oleh karena itu, kita perlu melakukan proses identifikasi dan diagnosis terlebih dahulu untuk dapat mengetahui gejala yang terjadi pada penyakit mata. Pada penelitian ini, akan dilakukan proses klasifikasi penyakit mata dengan menggunakan metode CNN. Dataset yang digunakan pada penelitian ini yaitu merupakan dataset penyakit mata yang memiliki total data citra sebanyak 4217 citra dengan 4 kelas yaitu cataract, diabetic retinopathy, glaucoma dan normal. Pada penelitian ini, akan menggunakan metode Convolutional Neural Network untuk melakukan proses klasifikasi. Hasil yang didapatkan steelah dilakukannya pengujian pada penelitian ini yaitu mendapatkan akurasi pengujian yaitu sebesar 75.27%.

Full Text:

PDF

References


X. Xu, L. Zhang, J. Li, Y. Guan and L. Zhang, "A Hybrid Global-Local Representation CNN Model for Automatic Cataract Grading," in IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 2, pp. 556-567, Feb. 2020, doi: 10.1109/JBHI.2019.2914690.

Ren, L., Dong, J., Wang, X., Meng, Z., Zhao, L., & Deen, M. J. (2021). A Data-Driven Auto-CNN-LSTM Prediction Model for Lithium-Ion Battery Remaining Useful Life. IEEE Transactions on Industrial Informatics, 17(5), 3478–3487. https://doi.org/10.1109/TII.2020.3008223

Mzoughi, H., Njeh, I., Wali, A., Slima, M. ben, BenHamida, A., Mhiri, C., & Mahfoudhe, K. ben. (2020). Deep Multi-Scale 3D Convolutional Neural Network (CNN) for MRI Gliomas Brain Tumor Classification. Journal of Digital Imaging, 33(4), 903–915. https://doi.org/10.1007/s10278-020-00347-9

Deepak, S., & Ameer, P. M. (2019). Brain tumor classification using deep CNN features via transfer learning. Computers in Biology and Medicine, 111. https://doi.org/10.1016/j.compbiomed.2019.103345

Varshney, K., & Mishra, K. (2022). An Analysis of Health Benefits of Carrot. International Journal of Innovative Research in Engineering & Management, 211–214. https://doi.org/10.55524/ijirem.2022.9.1.40

Puneet, Kumar, R., & Gupta, M. (2022). Optical coherence tomography image based eye disease detection using deep convolutional neural network. Health Information Science and Systems, 10(1). https://doi.org/10.1007/s13755-022-00182-y

Mahdi Abdulkareem, N., & Mohsin Abdulazeez, A. (2021). Machine Learning Classification Based on Radom Forest Algorithm: A Review. https://doi.org/10.5281/zenodo.4471118

Kim, M., Yun, J., Cho, Y., Shin, K., Jang, R., Bae, H. J., & Kim, N. (2019). Deep learning in medical imaging. In Neurospine (Vol. 16, Issue 4, pp. 657–668). Korean Spinal Neurosurgery Society. https://doi.org/10.14245/ns.1938396.198

Deepak, S., & Ameer, P. M. (2021). Automated Categorization of Brain Tumor from MRI Using CNN features and SVM. Journal of Ambient Intelligence and Humanized Computing, 12(8), 8357–8369. https://doi.org/10.1007/s12652-020-02568-w

Pisner, D. A., & Schnyer, D. M. (2019). Support vector machine. In Machine Learning: Methods and Applications to Brain Disorders (pp. 101–121). Elsevier. https://doi.org/10.1016/B978-0-12-815739-8.00006-7

Lu, W., Li, J., Wang, J., & Qin, L. (2021). A CNN-BiLSTM-AM method for stock price prediction. In Neural Computing and Applications (Vol. 33, Issue 10, pp. 4741–4753). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s00521-020-05532-z

Kumar, R., Joshi, S., & Dwivedi, A. (2021). CNN-SSPSO: A Hybrid and Optimized CNN Approach for Peripheral Blood Cell Image Recognition and Classification. International Journal of Pattern Recognition and Artificial Intelligence, 35(5). https://doi.org/10.1142/S0218001421570044

Thaiyalnayaki, K. (2021). Classification of diabetes using deep learning and svm techniques. International Journal of Current Research and Review, 13(1), 146–149. https://doi.org/10.31782/IJCRR.2021.13127




DOI: https://doi.org/10.30998/semnasristek.v8i01.7129

Refbacks

  • There are currently no refbacks.


Prosiding SEMNAS RISTEK indexed by: